• English

上海凡默谷信息技术有限公司

上海凡默谷信息技术有限公司

上海市

021-50263208
客服微信:ipharmogo

周一至周五 9:00~19:00

解决方案
  • 首页
  • 关于我们
    • 公司简介
    • 典型用户
    • 合作伙伴
  • 新闻资讯
    • 培训通知
    • 公司动态
  • 产品中心
    • GastroPlus
    • ADMET Predictor
    • DDDPlus
    • DILIsym
    • MonolixSuite
    • 其他产品
  • 培训中心
    • 视频汇总
    • 技术视频
    • 技术文章
    • 使用FAQ
    • 历年文献汇总
  • 在线申请
  • 联系我们
  • 首页
  • 关于我们
    • 全部
    • 公司简介
    • 典型用户
    • 合作伙伴
  • 新闻资讯
    • 全部
    • 培训通知
    • 公司动态
  • 产品中心
    • 全部
    • GastroPlus
    • ADMET Predictor
    • DDDPlus
    • DILIsym
    • MonolixSuite
    • 其他产品
  • 培训中心
    • 全部
    • 视频汇总
    • 技术视频
    • 技术文章
    • 使用FAQ
    • 历年文献汇总
  • 在线申请
    • 全部
  • 联系我们
    • 全部
GastroPlus 在口服吸收、制剂开发等的应用文章 (2011—2020 )
  1. 您现在所在位置:
  2. 网站首页
  3. GastroPlus系列文章汇总

GastroPlus 在口服吸收、制剂开发等的应用文章 (2011—2020 )

2020-10-18 17:56:19

导  读


凡默谷技术部精取了2011-2020年10月GastroPlus在口服吸收、制剂开发等的应用文章97篇。

其中序号1-30的文章是2019年8年-2020年10月新增文章。

希望对您的业务或专业学习有所帮助。内容如下:


1. 使用基于生理的生物药剂学模型(PBBM)预测速释制剂空腹和餐后的生物等效性


Prediction of fasted and fed bioequivalence for immediate release drug products using physiologically based biopharmaceutics modeling (PBBM).

Jereb R, Kristl A, Mitra A. Eur J Pharm Sci. Volume 155, 1 December 2020, 105554.IF= 3.616


2. 联合体外-计算机模拟的方法,预测BCS II / IV类弱碱阿苯达唑及其主要代谢物阿苯达唑亚砜的口服生物利用度边界


A combined in vitro in-silico approach to predict the oral bioavailability of borderline BCS Class II/IV weak base Albendazole and its main metabolite Albendazole Sulfoxide.

Pettarin M, Bolger MB, Chronowska M. Eur J Pharm Sci. Volume 155, 1 December 2020, 105552. IF= 3.616


3. 使用基于生理的大鼠吸收模型,考察不同粒径的非诺贝特纳米悬浮液对生物药剂学性能的影响


Impact of differential particle size of fenofibrate nanosuspensions on biopharmaceutical performance using physiologically based absorption modeling in rats.

Jain D, Thakur PS, Thakore SD, Samal SK, Bansal AK. J Drug Deliv Sci Technol. Volume 60, December 2020, 102040. IF= 2.734


4. 预测进食状态和粒度对ODM-204吸收的影响


Predicting the effect of prandial stage and particle size on absorption of ODM-204.

Ojala K, Schilderink R, Nykanen P, van Veen B, Malmstrom C, Juppo A, Korjamo T.Eur J Pharm Biopharm. Volume 156, November 2020, Pages 75-83. IF= 4.604


5.  IMI-口服药物的生物药剂学方法-评价自下而上的PBPK方法预测的成功率的第4部分:采用改进后的数据和建模策略的预测准确性和软件比较


IMI – Oral biopharmaceutics tools project – Evaluation of bottom-up PBPK prediction success part 4: Prediction accuracy and software comparisons with improved data and modelling strategies.

Ahmad A, Pepin X, Aarons L, Wang Y, Darwich AS, Wood JM, et al. Eur J Pharm Biopharm. Volume 156, November 2020, Pages 50-63. IF= 4.604


6. 食品级阳离子纳米乳剂对结核分枝杆菌形态的转变和肠道渗透的调节:体外-在体-GastroPlus计算机模拟研究


Morphological transition of M. tuberculosis and modulation of intestinal permeation by food grade cationic nanoemulsion: In vitro-ex vivo-in silico GastroPlus studies.

Alshehri S, Altamimi MA, Hussain A, Imam SS, Singh SK, Faruk A. Journal of Drug Delivery Science and Technology. Volume 60, December 2020, 101971. IF= 2.734


7.   通过计算机模拟研究,考察治疗肺动脉高血压的新型西地那非自乳化药物递送系统对吸收的改善


In Silico studies of novel Sildenafil self-emulsifying drug delivery system absorption improvement for pulmonary arterial hypertension.

Abrahim-Vieira BA, Souza AMTDE, Barros RC, Carmo FADO, Moreira RSS, Honorio TS, Rodrigues CR, Sousa VPDE, Cabral LM. An Acad Bras Cienc. (2020) 92(2). IF= 1.28


8.  瑞巴派特的生物药剂学特征:黏液结合区域在对小肠渗透性的影响


Biopharmaceutical characterization of rebamipide: The role of mucus binding in regional-dependent intestinal permeability.

Markovic M, Zur M, Dahan A, Cvijić S. European Journal of Pharmaceutical Sciences. Volume 152, 1 September 2020, 105440. IF=3.616


9.  人工合成膜在建立睾丸激素透皮凝胶生物预测性IVPT中的应用


Application of synthetic membranes in establishing bio-predictive IVPT for testosterone transdermal gel.

Mohamed LA, Kamal N, Elfakhri KH, Ibrahim S, Ashraf M, Zidan AS. Int J Pharm. Volume 586, 30 August 2020, 119572. IF=4.845


10. 通过体外-计算机模拟的方法,评估同向旋转双螺杆挤出机制备的Apremilast固体分散体


In Vitro-In Silico Evaluation of Apremilast Solid Dispersions Prepared via Corotating Twin Screw Extruder.

Muvva A, Lakshman D, Murthy Dwibhashyam VSN, Dengale SJ, Lewis SA. J Drug Deliv Sci Technol. Volume 59, October 2020, 101844. IF=2.734


11.  使用新兴的科技开发基于HME的药品:从概念到临床批的快速路线图


Developing HME-Based Drug Products Using Emerging Science: a Fast-Track Roadmap from Concept to Clinical Batch.

Matic J, Paudel A, Bauer H, Garcia RAL, Biedrzycka K, Khinast JG. AAPS PharmSciTech. 22 June 2020. IF=2.401


12.  采用基于生理的吸收模型,探讨食物和胃液pH值变化对恩曲替尼Entrectinib药代动力学的影响


Physiologically Based Absorption Modelling to Explore the Impact of Food and Gastric pH Changes on the Pharmacokinetics of Entrectinib.

Parrott N, Stillhart C, Lindenberg M, Wagner B, Kowalski K, Guerini E, Djebli N, Meneses-Lorente G. AAPS J (2020) 22:78. IF= 3.737


13. 用于支持药品开发,生产变更与控制的转化建模策略的现状和未来期望:研讨会总结报告


Current State and Future Expectations of Translational Modeling Strategies to Support Drug Product Development, Manufacturing Changes and Controls: A Workshop Summary Report.

Pepin XJ, Parrott N, Dressman J, Delvadia PR, Mitrić M, Zhang X, Babiskin AH, Kolhatkar V, Suarez-Sharp S. J Pharm Sci. May 2020. IF=3.616


14.  采用含有棕榈油和Capmul MCM的自纳米乳化释药递送系统,改善己酮可可碱Pentoxifylline的口服PK


Improved Oral Pharmacokinetics of Pentoxifylline with Palm Oil and Capmul MCM Containing Self-Nano-Emulsifying Drug Delivery System.

Shailendrakumar AM, Ghate VM, Kinra M, Lewis SA. AAPS PharmSciTech. 2020.IF= 2.401


15. 针对口服给药的建模转化策略:学术,工业和监管的观点


Translational Modeling Strategies for Orally Administered Drug Products: Academic, Industrial and Regulatory Perspectives.

Sandra Suarez-Sharp, Anders Lindahl, Tycho Heimbach, Amin Rostami-Hodjegan, Michael B. Bolger, Siladitya Ray Chaudhuri, Bart Hens. Pharm Res. 2020 May 13;37(6):95. IF= 3.242


16.  使用生物相关溶出度测试和PBPK建模了解厄贝沙坦的口服吸收


Understanding the Oral Absorption of Irbesartan Using Biorelevant Dissolution Testing and PBPK Modeling.

Kaur N, Thakur PS, Shete G, Gangwal RP, Sangamwar AT, Bansal AK. AAPS PharmSciTech. IF=2.401


17. 具有生物相关性的胃排空模拟,及胃排空对模型药物溶出和吸收动力学的影响


The biorelevant simulation of gastric emptying and its impact on model drug dissolution and absorption kinetics.

Vrbanac H, Trontelj J, Berglez S, Petek B, Opara J, Jereb R, Krajcar D, Legen I. Eur J Pharm Biopharm. Volume 149, April 2020, Pages 113-120. IF= 4.604


18. 使用两相胃肠道模拟器评估药物在体外的过饱和,并预测其体内性能:以BCS IIB药物为案例


Evaluating supersaturation in vitro and predicting its performance in vivo with Biphasic gastrointestinal Simulator: A case study of a BCS IIB drug.

Yanxiong Gan, Xue Zhang, Dengqiu Xu, Hongjuan Zhang, Jan P. Baak, Lin Luo, Yulong Xia, Jie Wang, Xue Ke, Piaoyang Sun. International Journal of Pharmaceutics. Volume 578, 30 March 2020, 119043. IF=4.845


19. 用于首次人体临床研究的固体制剂的工业开发方法:预测科学和精益原理的应用


An industrial approach towards solid dosage development for first-in-human studies: Application of predictive science and lean principles.

Kalaria DR, Parker K, Reynolds GK, Laru J. Drug Discovery Today. Volume 25, Issue 3, March 2020, Pages 505-518. IF=7.321


20.  使用体外转移模型和选择不同的溶出介质研究弱质子化碱性化合物的溶出性能的意义:使用沙奎那韦作为模型药物进行考察


The Significance of Utilizing In Vitro Transfer Model and Media Selection to Study the Dissolution Performance of Weak Ionizable Bases: Investigation Using Saquinavir as a Model Drug

Chegireddy M, Hanegave GK, Lakshman D, Urazov A, Sree KN, Lewis SA, Dengale SJ. AAPS PharmSciTech. January 2020. IF=2.401


21. 化合物的类药性和可开发的空间进化:化学修饰的新形式和新兴的小分子


The Evolving Druggability and Developability Space: Chemically Modified New Modalities and Emerging Small Molecules.

Yang W, Gadgil P, Krishnamurthy VR, Landis M, Mallick P, Patel D, Patel PJ, Reid DL, Sanchez-FelixM. AAPS J. January 2020. IF= 3.737


22. 开发具有临床相关性的口服药品溶出标准-制药企业和法规监管的观点


Developing Clinically Relevant Dissolution Specifications for Oral Drug Products-Industrial and Regulatory Perspectives.

McAllister M, Flanagan T, Boon K, Pepin X, Tistaert C, Jamei M, Abend A, Kotzagiorgis E, Mackie CE. Pharmaceutics. 2019 Dec 23;12(1):19. IF=4.421


23. 在Verubecestat后期临床阶段的制剂开发中支持多晶型药物的生物豁免的应用-全球法规监管合作的当前挑战和未来机遇


Biowaiver Applications in Support of a Polymorph During Late-Stage Clinical Development of Verubecestat—Current Challenges and Future Opportunities for Global Regulatory Alignment

Abend A, Xiong L, Zhang X, Frankenfeld C, Kesisoglou F, Reuter K, Kotwal P. AAPS J. 2019 Dec 20;22(1):17. IF= 3.737


24. 通过PBPK吸收模型预测调释制剂胶囊的体外-体内关系IVIVR和生物等效性


In vitro–In vivo Relationship and Bioequivalence Prediction for Modified-Release Capsules Based on a PBPK Absorption Model.

Jereb R, Opara J, Legen I, Petek B, Grabnar-Peklar D. AAPS PharmSciTech. (2020) 21: 18. IF=2.401

25. 考察无定型纳米颗粒对难溶性药物口服吸收影响的建模实用方法


Practical approach to modeling the impact of amorphous drug nanoparticles on the oral absorption of poorly soluble drugs.

Stewart AM, Grass M. Mol. Pharmaceutics. 2020, 17, 180−189. IF=4.321


26. 利用体外,体内和计算机模拟的方法评估吸收具有pH依赖性的BCS II类化合物并确定降低pH影响的策略


Utilization of In Vitro, In Vivo and In Silico Tools to Evaluate the pH-Dependent Absorption of a BCS Class II Compound and Identify a pH-Effect Mitigating Strategy.

Gesenberg C, Mathias NR, Xu Y, Crison J, Savant I, Saari A, Good DJ, Hemenway JN, Narang AS, Schartman RR, Zheng N, Buzescu A, Patel J. Pharm Res. 2019 Oct 21;36(12):164. IF= 3.242


27. 采用具有生物预测性的体外测试方法,评估过饱和剂型在肠道中的吸收


Biopredictive in vitro testing methods to assess intestinal drug absorption from supersaturating dosage forms.

Hens B, Kataoka M, Ueda K, Gao P, Tsume Y, Augustijns P, Kawakami K, Yamashita S. J Drug Deliv Sci Technol. Volume 56, Part B, April 2020, 101275. IF=2.734


28. 辛伐他汀缓释的新型脂质药物传递系统的制剂处方和表征:以聚甲基丙烯酸甲酯聚合物作为固体载体


Formulation and characterization of novel lipid-based drug delivery systems containing polymethacrylate polymers as solid carriers for sustained release of simvastatin.

Ćetković Z, Cvijić S, Vasiljević D. J Drug Deliv Sci Technol. Volume 53, October 2019, 101222. IF=2.734


29. 基于生理药代动力学PBPK模型的吡罗昔康速释制剂BE豁免和溶出标准的可行性:深度分析


Justification of Biowaiver and Dissolution Rate Specifications for Piroxicam Immediate Release Products Based on Physiologically Based Pharmacokinetic Modeling: An In-Depth Analysis.

Xiaoting Li, Yuanhang Yang, Yu Zhang and et.al. Molecular Pharmaceutics 2019; 16 (9); 3780-3790.  IF=4.321


30. 采用生理药代动力学PBPK模型,评估影响美托洛尔缓释药品生物等效性的制剂因素


Physiologically Based Pharmacokinetic Modeling to Evaluate Formulation Factors Influencing Bioequivalence of Metoprolol Extended-Release Products.

Sumit Basu, Haitao Yang, Lanyan Fang, Mario Gonzalez‐Sales, Liang Zhao, Mirjam N. Trame, Lawrence Lesko, Stephan Schmid. J Clin Pharmacol. Volume59, Issue9. September 2019 Pages 1252-1263.  IF=2.425


31. 使用生理药代动力学PBPK模型评估卡马西平过饱和的制剂处方在大鼠体内的生物药剂学性能


Assessment of Biopharmaceutical Performance of Supersaturating Formulations of Carbamazepine in Rats Using Physiologically Based Pharmacokinetic Modeling.

Thakore SD, Thakur PS, Shete G, Gangwal RP, Narang AS, Sangamwar AT, Bansal AK. AAPS PharmSciTech. Apr 30, 2019. IF=2.401


32. 强心甙Cerberin通过PI3K / AKT / mTOR信号转导抑制的作用发挥抗癌活性


Cardiac glycoside Cerberin exerts anticancer activity through PI3K/AKT/mTOR signal transduction inhibition.

Hossan MS, Chan ZY, Collins HM, Shipton FN, Butler MS, Rahmatullah M, Lee JB, Gershkovich P, Kagan L, Khoo TJ, Wiart C, Bradshaw TD. Cancer Lett. Mar 28, 2019. IF=7.36


33. 综合分析固体形态变化对溶解度和渗透性的影响:案例-RORc抑制剂口服给药后在大鼠体内的暴露


An Integrated Analysis of Solid Form Change Impact on Solubility and Permeability: Case Study of Oral Exposure in Rats of a RORc Inhibitor.

Chiang PC, Nagapudi K, Liu J, Zbieg JR, Plise EG, Deng Y. J Pharm Sci. Feb 7, 2019.IF=3.616


34. 采用基于生理学的吸收模型预测口服缓控制剂和速释制剂的生物等效性


Physiologically based absorption modeling to predict bioequivalence of controlled release and immediate release oral products.

Mitra A, Petek B, Velagapudi R. European Journal of Pharmaceutics and Biopharmaceutics. Volume 134, January 2019, Pages 117-125. IF=4.60


35. 通过体外,多房室转移系统和机制性口服吸收模型获得整体的沉淀动力学,从而预测弱碱性药物的体内PK


Integration of Precipitation Kinetics From an In vitro, Multicompartment Transfer System and Mechanistic Oral Absorption Modeling for Pharmacokinetic Prediction of Weakly Basic Drugs. 

Patel S, Zhu W, Xia B, Sharma N, Hermans A, Ehrick JD, Kesisoglou F, Pennington J.J Pharm Sci. January 2019 Volume 108, Issue 1, Pages 574–583. IF=3.616


36. 在GastroPlus™中采用动态流体学和pH模型模拟弱碱药物在血管内和体循环的浓度


Application of a Dynamic Fluid & pH Model to Simulate Intraluminal and Systemic Concentrations of a Weak Base in GastroPlus™.

Hens B, Bolger MB. J Pharm Sci. January 2019 Volume 108, Issue 1, Pages 305–315. IF=3.616


37. 具有体内预测性的溶出方法和模拟研讨会汇总:促进口服药物制剂处方的开发和口服疗效的预测


In Vivo Predictive Dissolution and Simulation Workshop Report: Facilitating the Development of Oral Drug Formulation and the Prediction of Oral Bioperformance.

Tsume Y, Patel S, Fotaki N, Bergstrom CAS, Amidon GL, Brasseur JG, Mudie DM, Sun D, Bermejo M, Gao P, Zhu W, Sperry DC, Vertzoni M, Parrott N, Lionberger RA, Kambayashi A, Hermans A, Lu X, Amidon GE. AAPS J. 2018 Sep 6;20(6):100.IF=3.737


38. 采用体外-计算机建模方法评估固体分散剂能否提高缬沙坦溶出度和生物利用度


Assessing the potential of solid dispersions to improve dissolution rate and bioavailability of valsartan: In vitro-in silico approach.

Medarević D, Cvijić S, Dobričić V, Mitrić M, Djuriš J, Ibric S. Eur J Pharm Sci. 2018 Nov 1;124:188-198. IF=3.616


39. 基于hPEPT1绝对表达量建立伐昔洛韦的生理药代动力学PBPK模型及其应用


A physiologically based pharmacokinetic model for valacyclovir established based on absolute expression quantity of hPEPT1 and its application.

Sun L, Wang C, Zhang Y. Eur J Pharm Sci. 2018 Oct 15;123:560-568. IF=3.616


40. 采用体外方法评估空腹状态下,药物在小肠中的沉淀-PEARRL综述


In vitro methods to assess drug precipitation in the fasted small intestine – a PEARRL review.

O’Dwyer PJ, Litou C, Box KJ, Dressman JB, Kostewicz ES, Kuentz M, Reppas C. J Pharm Pharmacol. 2018 Jun 28. IF=2.571


41.     探讨小型猪的胃排空速率:食物类型和预先给药(甲氧氯普胺)对胃排空的影响


Exploring gastric emptying rate in minipigs: Effect of food type and pre-dosing of metoclopramide. 

Henze LJ, Griffin BT, Christiansen M, Bundgaard C, Langguth P, Holm R. Eur J Pharm Sci. 2018 Jun 15;118:183-190. IF=3.616


42. 根据碱性盐形药物在胃酸过少或胃酸缺乏的生物相关介质中数据,建立其基于生理学的吸收模型


Physiologically Based Absorption Modeling of Salts of Weak Bases Based on Data in Hypochlorhydric and Achlorhydric Biorelevant Media.

Kesisoglou F, Vertzoni M, Reppas C. AAPS PharmSciTech. 2018 Jun 5. IF=2.401


43. 联合应用体外试验和计算机模拟的方法指导雷尼替丁胃滞留给药系统的制备与表征


An in vitro – in silico approach for the formulation and characterization of ranitidine gastroretentive delivery systems.

Cvijić S, Ibric S, Parojcić J, Djuriš J. J Drug Deliv Sci Technol. 2018 June. IF=2.734


44. 通过体外试验和吸收模型联用的方法,预测替米沙坦β-环糊精包合复合物调释制剂


In silico prediction coupled with in vitro experiments and absorption modeling to study the inclusion complex of telmisartan with modified beta-cyclodextrin.

Abhishek Chandra, M. Vivek Ghate,K. S. AithalShaila ,A. Lewis. Journal of Inclusion Phenomena and Macrocyclic Chemistry. June 2018, Volume 91, Issue 1–2, pp 47–60. IF=1.56


45. 联用胃肠道模拟器GIS和双相溶出,更好地预测BCS IIb类药物的体内释放:酮康唑和雷洛昔芬


The Combination of GIS and Biphasic to Better Predict In Vivo Dissolution of BCS Class IIb Drugs, Ketoconazole and Raloxifene.

Tsume Y, Igawa N, Drelich AJ, Amidon GE, Amidon GL. J Pharm Sci. 2018 Jan;107(1):307-316. IF=3.616


46. 联用体外动力学模型和生理药代动力学PBPK模型,评估聚乙烯吡咯烷酮-乙酸乙烯酯共聚物的体内行为


Combining an In Vitro Kinetic Model with a Physiologically-Based Pharmacokinetic Model to Assess the Potential In Vivo Fate of Polyvinyl Pyrrolidone-Vinyl Acetate Copolymers.

Hsieh DS, Luo L, Xu Y, Engstrom JD, Gao Q. Pharm Res. 2018 Feb 28;35(4):79.IF=3.242


47. 采用基于生理学的口服吸收模型研究药物在肠道中的药物相互作用


Physiologically Based Oral Absorption Modelling to Study Gut-Level Drug Interactions.

Chung J, Kesisoglou F. J Pharm Sci. 2018 Jan;107(1):18-23. IF=3.616


48. 黄体酮纳米晶的制备与评价,以减少药物的肌肉刺激和提高生物利用度


Preparation and Evaluation of Progesterone Nanocrystals to Decrease Muscle Irritation and Improve Bioavailability.

Li L, Li W, Sun J, Zhang H, Gao J, Guo F, Yang X, Zhang X, Li Y, Zheng A. AAPS Pharm SciTech. 2018 Apr;19(3):1254-1263. IF=2.401


49. 在辛伐他汀载药的自微乳化药物递送系统开发中的体外/计算机模拟方法


In vitro/in silico approach in the development of simvastatin-loaded self-microemulsifying drug delivery systems.

Ćetković Z, Cvijić S, Vasiljević D. Drug Dev Ind Pharm. 2018 May;44(5):849-860.IF=2.365


50.  通过种属间的PK/PD转化,评价TRPM8阻断剂PF-05105679对核心体温降低的作用


A cross-species translational pharmacokinetic-pharmacodynamic evaluation of core body temperature reduction by the TRPM8 blocker PF-05105679.

Gosset J R, Beaumont K, Matsuura T, et al. Eur J Pharm Sci, 2017. IF=3.616


51. 在药物发现阶段,将高亲脂性的难溶性化合物盐形开发成高剂量给药的脂质SEDDS制剂


Lipophilic salts of poorly soluble compounds to enable high-dose lipidic SEDDS formulations in drug discovery.

Morgen M, Saxena A, Chen X Q, et al. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117: 212-223. IF=4.604


52. 采用具有体内预测力的溶出系统:胃肠模拟器(GIS),探索过饱和程度对BCS IIb类药物口服吸收的影响,以双嘧达莫和酮康唑为例


The impact of supersaturation level for oral absorption of BCS class IIb drugs, dipyridamole and ketoconazole, using in vivo predictive dissolution system: Gastrointestinal Simulator (GIS) . 

Tsume Y, Matsui K, Searls A L, et al. Eur J Pharm Sci, 2017, 102: 126-139. IF=3.616


53.     通过吸收模型和溶出试验,探索难溶性化合物Basmisanil速释制剂的释放特征


Characterising Drug Release from Immediate-Release Formulations of a Poorly Soluble Compound, Basmisanil, Through Absorption Modelling and Dissolution Testing.

Stillhart C, Parrott N J, Lindenberg M, et al. AAPS J. 2017, 19(3): 827-836.IF=3.737


54. 探索药品研发中狗和人的差异性II:采用建模与模拟的方法探索制剂因素对环丙沙星狗体内吸收与溶出的影响


Exploring Canine-Human Differences in Product Performance. Part II: Use of Modeling and Simulation to Explore the Impact of Formulation on Ciprofloxacin In Vivo Absorption and Dissolution in Dogs.

Martinez M N, Mistry B, Lukacova V, et al. AAPS J. 2017, 19(3): 712-726. IF=3.737


55.  通过体外和计算机建模的方法,表征他克莫司在具有生物相关溶出条件下的释放


In vitro and in silico characterisation of Tacrolimus released under biorelevant conditions. 

Mercuri A, Wu S, Stranzinger S, et al. International journal of pharmaceutics, 2016, 515(1): 271-280.  IF=4.845


56. 掺有自纳米乳化药物递送系统的抗结核药物的体外-体内-计算机模拟研究


In vitro–in vivo–in silico simulation studies of anti-tubercular drugs doped with a self nanoemulsifying drug delivery system.

Hussain A, Singh S K, Singh N, et al. RSC Advances, 2016, 6(95): 93147-93161.IF=3.119


57.  比较狗和人体的肠液对溶解度和生物药剂学风险评估的影响


Comparing Dog and Human Intestinal Fluids: Implications on Solubility and Biopharmaceutical Risk Assessment [J].

Walsh P L, Stellabott J, Nofsinger R, et al. AAPS PharmSciTech, 2017, 18(4): 1408-1416. IF=2.401


58.  采用体外溶出-渗透池室定量预测pH依赖性药物与胃酸减少剂的药物相互作用DDI:采用生理药代动力学PBPK模型进行比较


Utilizing In Vitro Dissolution-Permeation Chamber for the Quantitative Prediction of pH-Dependent Drug-Drug Interactions with Acid-Reducing Agents: a Comparison with Physiologically Based Pharmacokinetic Modeling [J].

Zhu A Z X, Ho M C D, Gemski C K, et al. AAPS J. 2016, 18(6): 1512-1523.  IF=3.737


59. 采用生理药代动力学PBPK模型评估药物辅料对药物口服吸收的影响:敏感性分析


Using physiologically based pharmacokinetic (PBPK) modeling to evaluate the impact of pharmaceutical excipients on oral drug absorption: sensitivity analyses [J].

Chow E C Y, Talattof A, Tsakalozou E, et al. AAPS J. 2016, 18(6): 1500-1511.IF=3.737


60. 开发用于描述在空腹和餐后条件下氯吡格雷片剂给药的体外体内相关IVIVC模型


Development of in vitro in vivo correlation models for clopidogrel tablets to describe administration under fasting and fed conditions.

Savu S N, Silvestro L, Mircioiu C, et al. Farmacia, 2016, 11(16): 18. IF=1.607


61. 通过胃肠模拟技术探索BCS III类药物的豁免可行性:拓展到特定部位吸收的试验


Exploring the Feasibility of Biowaiver Extension of BCS Class III Drugs with Site-Specific Absorption Using Gastrointestinal Simulation Technology.

Sun L, Sun J, He Z. European Journal of drug metabolism and pharmacokinetics, 2017, 42(3): 471-487. IF=1.913


62. 采用基于生理学的吸收模型,探讨食物和胃液pH值变化对艾乐替尼PK的影响


Physiologically Based Absorption Modeling to Explore the Impact of Food and Gastric pH Changes on the Pharmacokinetics of Alectinib [J].

Parrott N J, Li J Y, Takano R, et al. AAPS J. 2016, 18(6): 1464-1474.  IF=3.737


63. 用于无定形固体分散体制剂处方的基于生理学的吸收模型

Physiologically Based Absorption Modeling for Amorphous Solid Dispersion Formulations.

Mitra A, Zhu W, Kesisoglou F. Molecular pharmaceutics, 2016, 13(9): 3206-3215.IF=4.321


64.     基于Lesinurad速释片剂的PBPK吸收模型,探索药品溶出速率和原料药粒径规格的豁免


Justification of drug product dissolution rate and drug substance particle size specifications based on absorption PBPK modeling for Lesinurad immediate release tablets.

Pepin XJ, Flanagan TR, Holt DJ, Eidelman A, Treacy D, Rowlings CE. (2016) Mol Pharm. Jul 20. 13(9): 3256-3269. IF=4.321


65. 用于酯类前药临床试验药品缓释制剂设计的基于生理学的吸收模型


Physiologically Based Absorption Modeling to Design Extended-Release Clinical Products for an Ester Prodrug.

Ding X, Day J S, Sperry D C. AAPS J. 2016, 18(6): 1424-1438. IF=3.737


66. 采用PBPK吸收模型指导加波沙朵的调释制剂处方开发,这是一种高溶解度且吸收具有胃肠道区域依赖性的化合物


Utility of PBPK Absorption Modeling to Guide Modified Release Formulation Development of Gaboxadol, a Highly Soluble Compound with Region-Dependent Absorption.

Kesisoglou F, Balakrishnan A, Manser K. (2015) J Pharm Sci. Oct 12. IF=3.616


67. 采用建模与模拟探究处方对低溶解度药物吸收的影响-环丙沙星


Use of Modeling and Simulation Tools for Understanding the Impact of Formulation on the Absorption of Low Solubility Compound: Ciprofloxacin.

Martinez M, Mistry B, Lukacova V, Polli J, Hoag S, Dowling T, Kona R, Fahmy R.AAPS J. Apr 26. IF=3.737


68.  针对肠溶包衣制剂具有生物预测力的溶出方法


Toward Biopredictive Dissolution for Enteric Coated Dosage Forms.

Al-Gousous J, Amidon GL, Langguth P. (2016) Mol Pharm. May 10. IF=4.321


69. 溶解度-渗透性的相互影响和口服制剂处方的设计:考虑双因素比单因素效果更好


The solubility-permeability interplay and oral drug formulation design: Two heads are better than.one.

Dahan A, Beig A, Lindley D, Miller JM. (2016) Adv Drug Deliv Rev. Apr 26. IF=13.3


70. 孔隙阻塞:防止酒精倾泻的多颗粒制剂处方的新策略


Pore blocking: An innovative formulation strategy for the design of alcohol resistant multi-particulate dosage forms.

Schrank S, Jedinger N, Wu S, Piller M, Roblegg E. (2016) Int J Pharm. 509(1-2):219-28. IF=4.845


71. 采用生理药代动力学PBPK模型预测双环醇控释制剂在人体的PK


Application of physiologically based pharmacokinetic modeling in the prediction of pharmacokinetics of bicyclol controlled-release formulation in human.

Wang B, Liu Z, Li D, Yang S, Hu J, Chen H, Sheng L, Li Y. (2015). Eur J Pharm Sci.Jun 24. IF=3.616


72. 生理学吸收模型在安非他命盐型药品的仿制药评价中的应用


Application of Physiologically Based Absorption Modeling for Amphetamine Salts Drug Products in Generic Drug Evaluation.

Babiskin AH, Zhang X. (2015). J Pharm Sci. May 13. IF=3.616


73. 自我聚合和过饱和在难溶性弱碱药物口服吸收中的作用


Role of Self-Association and Supersaturation in Oral Absorption of a Poorly Soluble Weakly Basic Drug.

Narang AS, Badawy S, Ye Q, Patel D, Vincent M, Raghavan K, Huang Y, Yamniuk A, Vig B, Crison J, Derbin G, Xu Y, Ramirez A, Galella M, Rinaldi FA. (2015) Pharm Res. Feb 28. IF=3.242


74. 对比肠道环境的具有生物相关性的模拟溶出介质,评估难溶性药物的溶解度曲线


Comparison of biorelevant simulated media mimicking the intestinal environment to assess the  solubility profiles of poorly soluble drugs.

Prasad D, Gu CH, Kuldipkumar A. (2015) Pharm Dev Technol. Feb 23:1-7. IF=2.169


75. 药学-难溶性是药学中的难题:探索丙型肝炎蛋白酶抑制剂的机制和解决方案


The potency–insolubility conundrum in pharmaceuticals: Mechanism and solution for hepatitis C protease inhibitors.

Connelly PR, Snyder PW, Zhang Y, McClain B, Quinn BP, Johnston S, Medek A, Tanoury J, Griffith J, Walters WP, Dokou E, Knezic D, Bransford P. (2015)Biophysical Chem. 196:100-108. IF=1.995


76. 开发溶出和沉淀的合并模型,并用于预测药物的口服吸收


Development of a Unified Dissolution and Precipitation Model and Its Use for the Prediction of Oral Drug Absorption.

Jakubiak P, Wagner B, Grimm HP, Petrig-Schaffland J, Schuler F, Alvarez-Sánchez R. (2016) Mol Pharm. Jan 5. IF=4.321


77. 通过数学模型加速盐酸二甲双胍缓释片剂的开发


Mathematical Model-Based Accelerated Development of Extended-release Metformin Hydrochloride Tablet Formulation.

Chen W, Desai D, Good D, Crison J, Timmins P, Paruchuri S, Wang J, Ha K. (2015)AAPS PharmSciTech Oct. 19. IF=2.401


78. 通过调释制剂的设计降低窄治疗指数窄药物引起的临床不良反应事件:体外,体内,计算机预测和临床PK分析


Mitigation of Adverse Clinical Events of a Narrow Target Therapeutic Index Compound through Modified Release Formulation Design: An In Vitro, In Vivo, In Silico, and Clinical Pharmacokinetic Analysis.

Good DJ, Hartley R, Mathias N, Crison J, Tirucherai G, Timmins P, Hussain M, Haddadin R, Koo O, Nikfar F, Fung NK. (2015) Mol Pharm. Nov 4. IF=4.321


79. 使用体外、计算机模拟和大鼠体内模型预测具有pH依赖性的药物吸收:在先导化合物优化阶段尽早评估


Prediction of pH dependent absorption using in vitro, in silico, and in vivo rat models: Early liability assessment during lead optimization.

Saxena A, Shah D, Padmanabhan S, Gautam SS, Chowan GS, Mandlekar S, Desikan S. (2015) Eur J Pharm Sci. May 8;76:173-180. IF=3.616


80. 使用亲水和疏水等级的二氧化硅Aerosil®制备氯雷他定的自微乳释药系统SNEDDS固体制剂,并进行PK评估,使用计算机模拟的GastroPlus™的进行体内预测


Solidified SNEDDS of loratadine: formulation using hydrophilic and hydrophobic grades of Aerosil®, pharmacokinetic evaluations and in vivo–in silico predictions using GastroPlus™.

Verma S, Singh SK, Verma PRP. (2016) RSC Adv. 6:3099-3116. IF=3.119


81. 以地尔硫卓作为模型药物,通过新型口服可吞咽IntelliCap(®)装置对人胃肠道区域的药物吸收进行定量研究


Novel Orally Swallowable IntelliCap(®) Device to Quantify Regional Drug Absorption in Human GI Tract Using Diltiazem as Model Drug.

Becker D, Zhang J, Heimbach T, Penland RC, Wanke C, Shimizu J, Kulmatycki K. (2014) AAPS PharmSciTech. Dec;15(6):1490-7. IF=2.401


82.  新的抗肿瘤吡唑衍生化合物的生物药剂学概况


Biopharmaceutical profiling of new antitumor pyrazole derivatives.

Anuta V, Nitulescu GM, Dinu-Pîrvu CE, Olaru OT. (2014) Molecules. Oct 13;19(10):16381-401. IF=3.267


83. 生物药剂学分类BCS系统的亚型:用于预测体内溶出(IPD)的方法和IVIVC


The Biopharmaceutics Classification System: Subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC.

Tsume Y, Mudie DM, Langguth P, Amidon GE, Amidon GL. (2014) Eur J Pharm Sci. Jan 28. IF=3.616


84.     在药物早期开发阶段,通过临时调配缓控释制剂加速候选药物的开发


Extemporaneously prepared controlled release formulations for accelerating the early phase development of drug candidates.

Thombre AG, Berchielli A, Rogers JF. (2014) Drug Discov Today. Feb 19. IF=7.321


85. 新的组织蛋白酶K抑制剂ONO-5334对骨吸收标志物的影响:对具有不同PK模式的4种缓释制剂进行研究


Effects of novel cathepsin K inhibitor ONO-5334 on bone resorption markers: a study of four sustained release formulations with different pharmacokinetic patterns.

Tanaka M, Hashimoto Y, Sekiya N, Honda N, Deacon S, Yamamoto M. (2013) J Bone Miner Metab. Oct 11. IF=2.297


86. 基于机制性胃肠模拟和人工神经网络开发的药物吸收体外-计算机模拟-体内模型:以硝苯地平渗透泵缓释片为例


In vitro – in silico – in vivo drug absorption model development based on mechanistic gastrointestinal simulation and artificial neural networks: Nifedipine osmotic release tablets case study.

Ilic M, Duriš J, Kovacevic I, Ibric S, Parojcic J. (2014) Eur J Pharm Sci. Jun 6.IF=3.616

87. 用于难溶性药物递送系统的无定形固体分散体和纳米晶技术


Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery.

Brough C, Williams RO 3rd. (2013) Int J Pharm. Jun 7. IF=4.845


88. 用生理药代动力学PBPK模型评价药物盐形的溶解度,并纳入筛选程序:以苯妥英为例


Incorporation of Physiologically Based Pharmacokinetic Modeling in the Evaluation of Solubility Requirements for the Salt Selection Process: A Case Study Using Phenytoin.

Chiang PC, Wong H. (2013) AAPS J. Aug. 14. IF=3.737


89. 通过临床前狗的研究试验和吸收模型,促进BCS II候选药物后期的制剂处方桥接


Use of Preclinical Dog Studies and Absorption Modeling to Facilitate Late Stage Formulation Bridging for a BCS II Drug Candidate.

Kesisoglou F. (2013) AAPS Pharm SciTech. Sep 11. IF=2.401


90. 评估新化合物的吸收具有pH依赖性的风险:通过新的体外溶出试验,物理化学性质分析和风险评估策略


Assessing the Risk of pH-Dependent Absorption for New Molecular Entities: A Novel in Vitro Dissolution Test, Physicochemical Analysis, and Risk Assessment Strategy.

Mathias NR, Xu Y, Patel D, Grass M, Caldwell B, Jager C, Mullin J, Hansen L, Crison J, Saari A, Gesenberg C, Morrison J, Vig BS, Raghavan K. (2013) Mol Pharm. Sep 13. IF=4.321


91. 通过对阿西替尼Axitinib与人外排和肝脏摄取转运体的体外相互作用进行表征,了解这些因素对处置和药物相互作用的影响


In Vitro Characterization of Axitinib Interactions with Human Efflux and Hepatic Uptake Transporters. Implications for Disposition and Drug Interactions.

Reyner E, Sevidal S, West MA, Clouser-Roche A, Freiwald S, Fenner K, Ullah M, Lee C, Smith BJ. (2013) Drug Metab Dispos. May 31. IF=3.231


92.  通过基于生理学的吸收模型,研究阿片类拮抗剂在临床上PK的变异度


Investigation of clinical pharmacokinetic variability of an opioid antagonist through physiologically based absorption modeling.

Ding X, He M, Kulkarni R, Patel N, Zhang X. (2013) J Pharm Sci. 102(8):2859-74.IF=3.616


93.  采用计算机预测肠道pH的变化对BCS II类弱酸性药物溶出和吸收的影响:布洛芬和酮洛芬


In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen.

Tsume Y, Langguth P, Garcia-Arieta A, Amidon GL. (2012) Biopharm. Drug Dispos.doi: 10.1002/bdd.1800. IF=1.663


94.  通过最大可吸收剂量评估临床药品的可开发性

Developability assessment of clinical drug products with maximum absorbable doses.

Ding X, Rose JP, Van Gelder J. (2012) Int J Pharm. 427(2):260-9. IF=4.845


95. 尼罗替尼临床前PK和针对临床项目的口服吸收和体循环生理利用度的实际应用

Nilotinib preclinical pharmacokinetics and practical application toward clinical projections of oral absorption and systemic availability.

Xia B, Heimbach T, He H, Lin TH. (2012) Biopharm Drug Dispos. Oct. 24. IF=1.663


96.  在药物发现阶段,通过对口服生物利用度的筛选来增强后期制剂的开发

Selection of oral bioavailability enhancing formulations during drug discovery.

Zheng W, Jain A, Papoutsakis D, Dannenfelser RM, Panicucci R, Garad S. (2012)Drug Devel. Indus. Pharm. 38(2):235-47. IF=2.365


97. 狗体内胃pH对BCS II类化合物PK的影响:利用人工胃和十二指肠溶出模型和GastroPlus™模拟预测药物的吸收

Effect of gastric pH on the pharmacokinetics of a BCS Class II compound in dogs: Utilization of an artificial stomach and duodenum dissolution model and GastroPlus™ simulations to predict absorption.

Bhattachar SN, Perkins EJ, Tan JS, Burns LJ. (2011) J Pharm Sci. Jun 16. IF=3.616

点击查看其他文献


  • GastroPlus在FDA等法规部门的应用文章(2016-2020)

  • GastroPlus在PBPK、ACAT、PBBM模型应用的综述文章(2011-2020)

  • 采用GastroPlus预测PK曲线或PK参数的应用文章(2011-2020)

  • GastroPlus在IVIVC, IVIVR, BE考察的应用文章(2012—2020)

  • GastroPlus在PK-PD结合模型的应用文章(2012—2020)

  • GastroPlus在预测特定人群PK的应用文章(2011—2020)

  • GastroPlus在预测药物相互作用DDI的应用文章(2011 —2020)

  • GastroPlus在考察食物效应的应用文章(2013—2020)

  • GastroPlus在考特殊给药途径的应用文章(2012—2020)

  • GastroPlus在毒理领域的应用文章(2012年—2020年10月)

  • 评估GastroPlus预测准确性的应用(2011年—2020年 10月)

  • 中国用户采用GastroPlus发表的应用文章(2013年—2020年10月)



  • 上一页: 采用GastroPlus预测PK曲线或PK参数的应用文章 (2011—2020)
  • 下一页: GastroPlus在IVIVC, IVIVR, BE考察的应用文章(2012—2020)
logo
  • 上海市
  • 021-50263208
  • 客服微信:ipharmogo

快捷导航

  • 关于我们
  • 新闻资讯
  • 产品中心
  • 培训中心
  • 在线申请
  • 联系我们

关注公众号
了解更多资讯

本站基于 米拓企业建站系统搭建 7.9 ©2008-2024 www.mituo.cn    沪ICP备12013663号-1

电话咨询
产品中心
新闻资讯
QQ客服