• English

上海凡默谷信息技术有限公司

上海凡默谷信息技术有限公司

上海市

021-50263208
客服微信:ipharmogo

周一至周五 9:00~19:00

解决方案
  • 首页
  • 关于我们
    • 公司简介
    • 典型用户
    • 合作伙伴
  • 新闻资讯
    • 培训通知
    • 公司动态
  • 产品中心
    • GastroPlus
    • ADMET Predictor
    • DDDPlus
    • DILIsym
    • MonolixSuite
    • 其他产品
  • 培训中心
    • 视频汇总
    • 技术视频
    • 技术文章
    • 使用FAQ
    • 历年文献汇总
  • 在线申请
  • 联系我们
  • 首页
  • 关于我们
    • 全部
    • 公司简介
    • 典型用户
    • 合作伙伴
  • 新闻资讯
    • 全部
    • 培训通知
    • 公司动态
  • 产品中心
    • 全部
    • GastroPlus
    • ADMET Predictor
    • DDDPlus
    • DILIsym
    • MonolixSuite
    • 其他产品
  • 培训中心
    • 全部
    • 视频汇总
    • 技术视频
    • 技术文章
    • 使用FAQ
    • 历年文献汇总
  • 在线申请
    • 全部
  • 联系我们
    • 全部
GastroPlus在IVIVC, IVIVR, BE考察的应用文章(2012—2020)
  1. 您现在所在位置:
  2. 网站首页
  3. GastroPlus系列文章汇总

GastroPlus在IVIVC, IVIVR, BE考察的应用文章(2012—2020)

2020-10-17 18:17:49

导  读


凡默谷技术部精取了2012-2020年10月GastroPlus在IVIVC, IVIVR, BE考察的应用文章58篇。

其中编号1-12的文章是2019年8月-2020年10月新增文章。

希望对您的业务或专业学习有所帮助。内容如下:


1.   具有生物预测性的体外方法:研讨会总结报告

In Vitro Biopredictive Methods: A Workshop Summary Report.
Pepin XJ, Dressman J, Parrott N, Delvadia P, Mitra A, Zhang X, Kolhatkar V, Seo P, Taylor LS, Sjögren E, Butler JM, Kostewicz ES, Tannergren C, Koziolek M, Kesisoglou F, Dallmann A, Zhao Y, Suarez-Sharp S. J Pharm Sci. September 2020.IF= 3.616

2.  使用生理药代动力学吸收模型建立奥司他韦在成人和儿童人群中的生物等效性溶出安全空间

Using a Physiologically Based Pharmacokinetic Absorption Model to Establish Dissolution Bioequivalence Safe Space for Oseltamivir in Adult and Pediatric Populations
Lei Miao, Youssef M. Mousa, Liang Zhao, Kimberly Raines, Paul Seo, Fang Wu.AAPS J. volume 22, Article number: 107 (2020). IF= 3.737

3.  通过体外溶出曲线相似性支持药品的质量评估:内容,如何应用,何时应用—研讨会总结报告

In Vitro Dissolution Profiles Similarity Assessment in Support of Drug Product Quality: What, How, When—Workshop Summary Report.
Suarez-Sharp S, Abend A, Hoffelder T, Leblond D, Delvadia PR, Kovacs E, Diaz DA.The AAPS Journal (2020) 22:74. IF= 3.737

4.  用于支持药品开发,生产变更与控制的转化建模策略的现状和未来期望:研讨会总结报告

Current State and Future Expectations of Translational Modeling Strategies to Support Drug Product Development, Manufacturing Changes and Controls: A Workshop Summary Report.
Pepin XJ, Parrott N, Dressman J, Delvadia PR, Mitrić M, Zhang X, Babiskin AH, Kolhatkar V, Suarez-Sharp S. J Pharm Sci. May 2020. IF=3.616

5. 使用生理药代动力学(PBPK)建模方法,建立具有临床相关性的溶出标准

Establishment of a clinically relevant specification for dissolution testing using physiologically based pharmacokinetic (PBPK) modeling approaches.
Takafumi Kato, Hiroshi Nakagawa, Tsuyoshi Mikkaichi, Takuya Miyano, Yoshiaki Matsumoto, Shuichi Ando. Eur J Pharm Biopharm. 2020 Jun;151:45-52. IF=4.604

6. 体内外相关性IVIVC在药物口服制剂开发中的应用:最近二十年缩影

In vitro – In vivo correlation in the development of oral drug formulation: A screenshot of the last two decades.
Marcelo Gomes Davanço, Daniel Rossi Campos, Patrícia de Oliveira Carvalho.International Journal of Pharmaceutics. Volume 580, 30 April 2020, 119210.IF=4.845

7. 使用生物相关溶出度测试和PBPK建模了解厄贝沙坦的口服吸收

Understanding the Oral Absorption of Irbesartan Using Biorelevant Dissolution Testing and PBPK Modeling.
Kaur N, Thakur PS, Shete G, Gangwal RP, Sangamwar AT, Bansal AK. AAPS PharmSciTech. IF=2.401

8. 具有生物相关性的胃排空模拟,及胃排空对模型药物溶出和吸收动力学的影响

The biorelevant simulation of gastric emptying and its impact on model drug dissolution and absorption kinetics.
Vrbanac H, Trontelj J, Berglez S, Petek B, Opara J, Jereb R, Krajcar D, Legen I. Eur J Pharm Biopharm. Volume 149, April 2020, Pages 113-120. IF= 4.604

9.  在Verubecestat后期临床阶段的制剂开发中支持多晶型药物的生物豁免的应用-全球法规监管合作的当前挑战和未来机遇

Biowaiver Applications in Support of a Polymorph During Late-Stage Clinical Development of Verubecestat—Current Challenges and Future Opportunities for Global Regulatory Alignment.
Abend A, Xiong L, Zhang X, Frankenfeld C, Kesisoglou F, Reuter K, Kotwal P. AAPS J. 2019 Dec 20;22(1):17. IF= 3.737

10.     通过PBPK吸收模型预测调释制剂胶囊的体外-体内关系IVIVR和生物等效性

In vitro–In vivo Relationship and Bioequivalence Prediction for Modified-Release Capsules Based on a PBPK Absorption Model.
Jereb R, Opara J, Legen I, Petek B, Grabnar-Peklar D. AAPS PharmSciTech. (2020) 21: 18. IF=2.401

11. 基于生理药代动力学PBPK模型的吡罗昔康速释制剂BE豁免和溶出标准的可行性:深度分析

Justification of Biowaiver and Dissolution Rate Specifications for Piroxicam Immediate Release Products Based on Physiologically Based Pharmacokinetic Modeling: An In-Depth Analysis.
Xiaoting Li, Yuanhang Yang, Yu Zhang and et.al. Molecular Pharmaceutics 2019; 16 (9); 3780-3790.  IF=4.396

12. 基于PBPK模型评估甲硝唑片剂的生物等效性,并分析体外溶出对体内吸收的影响

Evaluating the bioequivalence of metronidazole tablets and analyzing the effect of in vitro dissolution on in vivo absorption based on PBPK modeling.
Shuqi Zhang, Mengna Fang, Qi Zhang, Xiaoting Li, Tianhong Zhang. Drug Dev Ind Pharm . 2019 Oct;45(10):1646-1653. IF=2.365

13.  用于口服递送的利福平SNEDDS固体制剂:评估,概念的验证,体内动力学,采用GastroPlus进行计算机模拟

Solidified SNEDDS for the oral delivery of rifampicin: Evaluation, proof of concept, in vivo kinetics, and in silico GastroPlusTM simulation.
Hussain A, Shakeel F, Singh SK, Alsarra IA, Faruk A, Alanazi FK, Peter Christoper GV. Int J Pharm. May 24, 2019. IF=4.845

14. 通过计算机模拟不同的溶出曲线从而预测氟康唑胶囊在血浆中的浓度,并采用群体模拟进行生物等效性研究

In Silico Prediction of Plasma Concentrations of Fluconazole Capsules with Different Dissolution Profiles and Bioequivalence Study Using Population Simulation.
Duque MD, Silva DA, Issa MG, Porta V, Löbenberg R, Ferraz HG. Pharmaceutics.May 5, 2019. IF=4.421

15.  采用生理模型评价食物对克拉霉素速释片口服吸收的影响

Evaluation of Food Effect on the Oral Absorption of Clarithromycin from Immediate Release Tablet using Physiological Modelling.
Radwan A, Jayyousi R, Shraim N, Naser Zaid A. Biopharm Drug Dispos. Mar 19, 2019. IF=1.663

16.  建立体外-体内相关的溶出和转化建模策略-某研讨会总结汇总

Dissolution and Translational Modeling Strategies Toward Establishing an In Vitro-In Vivo Link-a Workshop Summary Report.
Heimbach T, Suarez-Sharp S, Kakhi M, Holmstock N, Olivares-Morales A, Pepin X, Sjögren E, Tsakalozou E, Seo P, Li M, Zhang X, Lin HP, Mitra A, Morris D, Patel N, Kesisoglou F. AAPS J. Feb 11, 2019. IF=3.737

17.  针对多奈哌齐和达那唑这类BCS IIc药物速释制剂的具有体内预测力的方法:通过GIS和USP II的双相溶出装置

The in vivo predictive dissolution for immediate release dosage of donepezil and danazol, BCS class IIc drugs, with the GIS and the USP II with biphasic dissolution apparatus.
Tsume Y, Igawa N, Drelich AJ, Ruan H, Amidon GE, Amidon GL. J Drug Deliv Sci Technol. Jan 30, 2019. IF=2.606

18.  通过PBPK吸收模型建立体外-体内相关-制药工业界的观点

PBPK Absorption Modeling: Establishing the In Vitro–In Vivo Link—Industry Perspective. 
Stillhart C, Pepin X, Tistaert C, Good D, Van Den Bergh A, Parrott N, Kesisoglou F.AAPS J. Jan 23, 2019. IF=3.737

19.   在仿制药开发中,通过PBPK吸收模型评估BCS 2类药物晶型和无定形两种制剂处方的食物效应和生物等效性

PBPK Absorption Modeling of Food Effect and Bioequivalence in Fed State for Two Formulations with Crystalline and Amorphous Forms of BCS 2 Class Drug in Generic Drug Development. 
Rebeka J, Jerneja O, Igor L, Boštjan P, Aleksander B, Albin K. AAPS Pharm SciTech. Jan 8, 2019. IF=2.401

20.  采用基于生理学的吸收模型预测口服缓控制剂和速释制剂的生物等效性

Physiologically based absorption modeling to predict bioequivalence of controlled release and immediate release oral products.
Mitra A, Petek B, Velagapudi R. European Journal of Pharmaceutics and Biopharmaceutics. Volume 134, January 2019, Pages 117-125. IF=4.604

21.  通过整合的PBPK模型,对比达沙替尼不同的儿科用药制剂的生物等效性,并阐明相应的吸收机制

B
ioequivalence comparison of pediatric Dasatinib formulations and elucidation of absorption mechanisms through integrated PBPK modeling.
Vaidhyanathan S, Wang X, Crison JR, Varia S, Gao J, Saxena A, Good D. J Pharm Sci. January 2019Volume 108, Issue 1, Pages 741–749. IF=3.616

22.  受溶酶体捕获的药物(如右美沙芬),其制剂处方的标准制定与体外溶出不相关

The Irrelevance of in vitro Dissolution in Setting Product Specifications for Drugs like Dextromethorphan that are Subject to Lysosomal Trapping.
Bolger MB, Macwan J, Sarfraz M, Almukainzi M, Löbenberg R. J Pharm Sci.Volume 108, Issue 1, January 2019, Pages 268-278. IF=3.616

23.  使用生物相关溶出方法和PBPK建模来预测口服药物吸收

Use of Biorelevant Dissolution and PBPK Modeling to Predict Oral Drug Absorption. 
Kaur N, Narang AS, Kumar Bansal A. Eur J Pharm Biopharm. 2018 Aug; 129:222-246. IF=4.604

24.  比较体外转换模型和体外溶出试验获得的卡维地洛浓度曲线
Concentration Profiles of Carvedilol: A Comparison Between In Vitro Transfer Model and Dissolution Testing.
Hamed R, Kamal A. J Pharma Innovation. 2018 July. IF=2.209

25.  基于IVIVC模型,开发Metaxalone速释制剂临床相关的溶出方法
Development of a Clinically Relevant Dissolution Method for Metaxalone Immediate Release Formulations Based on an IVIVC Model.
Vuletić L, Khan MZI, Špoljarić D, Radić M, Cetina-Čižmek B, Filipović-Grčić. J. Pharm Res. 2018 Jun 22;35(8):163. IF=3.242

26.  针对盐酸二甲双胍固体口服速释制剂的体外溶出方法,并估算生物等效性豁免的结果
In Vitro Dissolution Methodology And Estimated Consequences Of Biowaiver Extension For Immediate Release Solid Oral Dosage Forms With Metformin Hydrochloride.
Ardelean M, Stoicescu SM, Stănescu AA, et,al. Farmacia, 2018, Vol. 66, 1. IF=1.607

27.  联用胃肠道模拟器GIS和双相溶出装置,更好地预测BCS IIb药物的体内释放:以酮康唑和雷洛昔芬作为案例
The Combination of GIS and Biphasic to Better Predict In Vivo Dissolution of BCS Class IIb Drugs, Ketoconazole and Raloxifene.
Tsume Y, Igawa N, Drelich AJ, Amidon GE, Amidon GL. J Pharm Sci. 2018 Jan;107(1):307-316. IF=3.616

28.  采用多西紫杉醇载药的PHBV-TPGS治疗囊泡的工艺优化和体内的性能:一种协同的方法
Process optimization and in vivo performance of docetaxel loaded PHBV-TPGS therapeutic vesicles: A synergistic approach.
Vardhan H, Mittal P, Adena SKR, Upadhyay M, Yadav SK, Mishra B. Int J Biol Macromol. 2018 Mar;108:729-743. IF=5.162

29. 将口服药品的数据输入到GIS的胃肠道模型中:GIS是一种评估口服药品性能的技术
Oral product input to the GI tract: GIS an oral product performance technology.
Amidon GL, Tsume Y. FRONT Chem Sci Eng. December 2017, Volume 11, Issue 4, pp 516–520. IF=3.552

30.  使用Gastroplus TM对呋塞米固体脂质纳米颗粒进行体外-体内相关性考察,并评估其PK
In vitro–in vivo and pharmacokinetic evaluation of solid lipid nanoparticles of furosemide using Gastroplus™ .
Ali H, Verma PRP, Dubey SK, Venkatesan J,et,al. RSC Adv. 2017, 7, 33314-33326.IF=3.119

31.  长效多西紫杉醇载药的聚(3-羟基丁酸酯 - 共-3-羟基戊酸酯)纳米粒子的开发:优化,药代动力学,细胞毒性和体内评估
Development of long-circulating docetaxel loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles: optimization, pharmacokinetic, cytotoxicity and in vivo assessments [J].
Vardhan H, Mittal P, Adena S K R, et al. Int J Biol Macromol, 2017 . IF=5.162

32.  非洛地平核壳型纳米胶囊的研究:体外-体内相关性评价
Studies on Core-Shell Nanocapsules of Felodipine: In Vitro-In Vivo Evaluations [J].
 Geroge J K, Verma P R P, Venkatesan J, et al. AAPS Pharm SciTech, 2017: 1-18. IF=2.401 

33.  使用Gastroplus TM对卡维地洛壳聚糖小球的胃肠道滞留进行体外和体内评估

In vitro and in vivo evaluation of gastro-retentive carvedilol loaded chitosan beads using Gastroplus™ [J].
Praveen R, Verma P R P, Venkatesan J, et al. International Journal of Biological Macromolecules, 2017, 102: 642-650. IF=5.162

34.  通过整合体外、建模、体内三种方法探讨华法林的生物等效性

Integrating in vitro, modeling, and in vivo approaches to investigate warfarin bioequivalence. 
Zhang X, Wen H, Fan J, et al. CPT: Pharmacometrics & Systems Pharmacology,2017. CiteScore=5.2

35.   通过吸收模型和溶出试验,探索难溶性化合物Basmisanil速释制剂的释放特征

Characterising Drug Release from Immediate-Release Formulations of a Poorly Soluble Compound, Basmisanil, Through Absorption Modelling and Dissolution Testing.
Stillhart C, Parrott N J, Lindenberg M, et al. AAPS J, 2017, 19(3): 827-836.IF=3.737  

36.     用于预测口服介孔二氧化硅制剂体内性能的体外溶出模型
In vitro dissolution models for the prediction of in vivo performance of an oral mesoporous silica formulation [J].
McCarthy C A, Faisal W, O'shea J P, et al. Journal of Controlled Release, 2017, 250: 86-95.  IF=7.727

37.   体外-体内相关性IVIVC:一般概念,方法,在法规监管中的应用
In vitro–in vivo correlations: general concepts, methodologies and regulatory applications [J]. 
González-García I, Mangas-Sanjuán V, Merino-Sanjuán M, et al. Drug development and industrial pharmacy, 2015, 41(12): 1935-1947.  IF=2.365

38.  开发用于描述在空腹和餐后条件下氯吡格雷片剂给药的体外体内相关IVIVC模型

Development of in vitro in vivo correlation models for clopidogrel tablets to describe administration under fasting and fed conditions.
Savu S N, Silvestro L, Mircioiu C, et al. Farmacia, 2016, 11(16): 18. IF=1.607

39.  采用LC-ESI-MS / MS估算氯雷他定载药的自纳米乳化药物递送系统在大鼠血浆中的情况:药代动力学的评估和使用GastroPlus TM的计算机模拟结果
LC-ESI-MS/MS estimation of loratadine-loaded Self-nanoemulsifying drug delivery systems in rat plasma: pharmacokinetic evaluation and computer simulations by GastroPlus™.
Verma S, Singh SK. (2016). J Pharm Biomedical Anal. Feb. 8. IF=3.209

40.  针对肠溶包衣制剂具有生物预测力的溶出方法
Toward Biopredictive Dissolution for Enteric Coated Dosage Forms.
Al-Gousous J, Amidon GL, Langguth P. (2016) Mol Pharm. May 10. IF=4.321

41.  采用PBPK吸收模型指导加波沙朵的调释制剂处方开发,这是一种高溶解度且吸收具有胃肠道区域依赖性的化合物
Utility of PBPK Absorption Modeling to Guide Modified Release Formulation Development of Gaboxadol, a Highly Soluble Compound with Region-Dependent Absorption.
Kesisoglou F, Balakrishnan A, Manser K. (2015) J Pharm Sci. Oct 12. IF=3.616

42.  使用生理药代动力学PBPK模型进行虚拟群体的PK模拟,从而评估拉西地平口服制剂在狗中的生物等效性

Virtual population pharmacokinetic using physiologically based pharmacokinetic model for evaluating bioequivalence of oral lacidipine formulations in dogs.
Yang B, Wu C, Ji B, Wu M, He Z, Shang L, Sun J. (2016). Asian J. Pharm. Sci. Mar.IF=3.968

43.  开发和验证雌二醇经皮给药系统的体内外相关性IVIVC模型

Development and validation of in vitro-in vivo correlation (IVIVC) for estradiol transdermal drug delivery systems.
Yang Y, Manda P, Pavurala N, Khan MA, Krishnaiah YS. (2015). J Control Release. May 13;210:58-66. IF=7.727

44. 生理学吸收模型在安非他命盐型药品的仿制药评价中的应用

Application of Physiologically Based Absorption Modeling for Amphetamine Salts Drug Products in Generic Drug Evaluation.
Babiskin AH, Zhang X. (2015). J Pharm Sci. May 13. IF=3.616

45.  体外溶出方法和微型胃肠模拟器(mGIS),更好地预测弱碱性药物达沙替尼的体内溶出

In vitro dissolution methodology, mini-Gastrointestinal Simulator (mGIS), predicts better in vivo dissolution of a weak base drug, dasatinib.
Tsume Y, Takeuchi S, Matsui K, Amidon GE, Amidon GL. (2015). Eur J Pharm Sci.May 12;76:203-212. IF=3.616

46. 针对BCS III候选药物的缓释制剂开发,比较两种IVIVC模型的效果:基于反卷积和吸收模型

Comparison of Deconvolution-Based and Absorption Modeling IVIVC for Extended Release Formulations of a BCS III Drug Development Candidate.
Kesisoglou F, Xia B, Agrawal NG. (2015). AAPS J. Aug 20. IF=3.737

47.  使用GastroPlus TM对卡维地洛载药的纳米胶囊进行体内PK模拟研究

In vivo in silico pharmacokinetic simulation studies of carvedilol-loaded nanocapsules using GastroPlus™.
George JK, Singh SK, Verma P. (2016). Ther Deliv. May;7(5):305-18. CiteScore=3.7

48.  预测不同制剂的在人和狗中的口服PK:结合生理药代动力学PBPK模型与具有生物相关性溶出方法

Interspecies prediction of oral pharmacokinetics of different formulations from dogs to human: physiologically based pharmacokinetic modelling combined with biorelevant dissolution.
Wu C, Kou L, Ma P, Gao L, Li B, Li R, Luo C, Shentu J, Hea Z, Sun J. (2015). RSC Adv. 5: 19844. IF=3.119

49.  使用亲水和疏水等级的二氧化硅Aerosil®制备氯雷他定的自微乳释药系统SNEDDS固体制剂,并进行PK评估,使用计算机模拟的GastroPlus™的进行体内预测

Solidified SNEDDS of loratadine: formulation using hydrophilic and hydrophobic grades of Aerosil®, pharmacokinetic evaluations and in vivo–in silico predictions using GastroPlus™. 
Verma S, Singh SK, Verma PRP. (2016) RSC Adv. 6:3099-3116. IF=3.119

50.  溶出度测试结合计算机模拟技术评估国产阿莫西林胶囊的生物等效性
Dissolution testing combined with computer simulation technology to evaluate the bioequivalence of domestic amoxicillin capsule.
Pan RX, Gao Y, Chen WL, Li YL, Hu CQ. (2014) Acta Pharmaceutica Sinica.Aug;49(8):1155-61. IF=1.736

51.  评估使用三房室体外胃肠模拟器的溶出装置预测体内释放的效果
Evaluation of a Three Compartment In Vitro Gastrointestinal Simulator Dissolution Apparatus to Predict In Vivo Dissolution.
Takeuchi S, Tsume Y, Amidon GE, Amidon GL. (2014). J Pharm Sci. Sept 22.IF=3.616

52.  使用吸收模型预测两批次的艾托考昔片的生物等效性情况
Application of Absorption Modeling to Predict Bioequivalence Outcome of Two Batches of Etoricoxib Tablets.
Mitra A, Kesisoglou F, Dogterom P. (2014). AAPS Pharm SciTech. Sep 3. IF=2.401

53.  通过布洛芬固体剂型的体外溶出曲线模拟它的体内暴露情况
Simulation of the In Vivo Exposure to Ibuprofen Based on In Vitro Dissolution Profiles from Solid Dosage Forms.
Popa DE, Lupuliasa D, Stanescu AA, Barca M, Burcea Dragomiroiu GTA, Miron DS, Radulescu FS. (2014). Farmacia. 62(3):483. IF=1.607

54.  生物药剂学分类BCS系统的亚型:用于预测体内溶出(IPD)的方法和IVIVC
The Biopharmaceutics Classification System: Subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC.
Tsume Y, Mudie DM, Langguth P, Amidon GE, Amidon GL. (2014) Eur J Pharm Sci.Jan 28. IF=3.616

55. 使用GastroPlus®建立依法韦仑片的体内-体内相关性IVIVC
In Vitro-In Vivo Correlation of Efavirenz Tablets Using GastroPlus®.
Honório TD, Pinto EC, Rocha HV, Esteves VS, Dos Santos TC, Castro HC, Rodrigues CR, de Sousa VP, Cabral LM. (2013). AAPS Pharm SciTech. Aug. 14. IF=2.401

56.  使用体内外相关性IVIVC预测几种BCS 1类药物缓释骨架片的PK
Use of In Vitro-In Vivo Correlation to Predict the Pharmacokinetics of Several Products Containing a BCS Class 1 Drug in Extended Release Matrices.
Mirza T, Bykadi SA, Ellison CD, Yang Y, Davit BM, Khan MA. (2012) Pharm Res.Aug. 22. IF=3.242

57. 开发利培酮速释片的体内-体内相关性IVIVC
Developing In Vitro–In Vivo Correlation of Risperidone Immediate Release Tablet.
Saibi Y, Sato H, and Tachiki H. (2012). AAPS Pharm SciTech. June 14. IF=2.401

58.  使用计算机模拟研究BCS III类盐酸二甲双胍的生物豁免方法
Biowaiver approach for biopharmaceutics classification system class 3 compound metformin hydrochloride using in silico modeling.
Crison JR, Timmins P, Keung A, Upreti VV, Boulton DW, Scheer BJ. (2012). J Pharm Sci. Feb. IF=3.616

点击查看其他文献


  • GastroPlus在FDA等法规部门的应用文章(2016-2020)

  • GastroPlus在PBPK、ACAT、PBBM模型应用的综述文章(2011-2020)

  • 采用GastroPlus预测PK曲线或PK参数的应用文章(2011-2020)

  • GastroPlus在口服吸收、制剂开发等的应用文章(2011—2020)

  • GastroPlus在PK-PD结合模型的应用文章(2012—2020)

  • GastroPlus在预测特定人群PK的应用文章(2011—2020)

  • GastroPlus在预测药物相互作用DDI的应用文章(2011 —2020)

  • GastroPlus在考察食物效应的应用文章(2013—2020)

  • GastroPlus在考特殊给药途径的应用文章(2012—2020)

  • GastroPlus在毒理领域的应用文章(2012年—2020年10月)

  • 评估GastroPlus预测准确性的应用(2011年—2020年 10月)

  • 中国用户采用GastroPlus发表的应用文章(2013年—2020年10月)


  • 上一页: GastroPlus 在口服吸收、制剂开发等的应用文章 (2011—2020 )
  • 下一页: GastroPlus在PK-PD结合模型的应用文章 (2012—2020年10月)
logo
  • 上海市
  • 021-50263208
  • 客服微信:ipharmogo

快捷导航

  • 关于我们
  • 新闻资讯
  • 产品中心
  • 培训中心
  • 在线申请
  • 联系我们

关注公众号
了解更多资讯

本站基于 米拓企业建站系统搭建 7.9 ©2008-2024 www.mituo.cn    沪ICP备12013663号-1

电话咨询
产品中心
新闻资讯
QQ客服